Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Michel Evain, ${ }^{\text {a* }}$ Sylvain Collet ${ }^{\text {b }}$ and André Guingant ${ }^{\text {b }}$

${ }^{\text {a }}$ Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France, and ${ }^{\mathbf{b}}$ Laboratoire de Synthèse, Organique UMR CNRS 6513, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, Francee

Correspondence e-mail: evain@cnrs-imn.fr

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.088$
Data-to-parameter ratio $=16.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

A chiral 3,4-dihydro-2H-thiopyran compound

The title compound, dimethyl (3R,4S)-3-\{[(4S)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]carbonyl\}-4-dimethylamino-3,4-di-hydro- $2 H$-thiopyran-5,6-dicarboxylate, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$, is the result of a diastereoselective Diels-Alder reaction between dimethyl (2E)-[(dimethylamino)methylene]-3-thiosuccinate and (4S)-3-acryloyl-4-benzyl-1,3-oxazolidin-2-one used as chiral auxiliary. Following an X-ray structure determination, the absolute configurations of both stereogenic centres formed during the cycloaddition were determined.

Comment

Asymmetric hetero Diels-Alder reaction appears to be the method of choice for the highly efficient regio- and stereoselective synthesis of various heterocycles in enantiomerically pure form (Waldmann, 1994). In the course of an ongoing project (Trippé et al., 2002) and in view of previous results obtained in our laboratory (Marchand et al., 1995), we isolated the substituted dihydro- 2 H -thiopyran resulting from the $[4+2]$ cycloaddition reaction of dimethyl $(2 E)-[($ di-methylamino)methylene]-3-thiosuccinate (Tea Gokou et al., 1985) and (4S)-3-acryloyl-4-benzyl-1,3-oxazolidin-2-one (Evans et al., 1984) in the presence of MgBr_{2} as catalyst. Only two diastereoisomers, in a $7 / 3$ ratio, were obtained at the end of the reaction and these were separated by chromatography on SiO_{2}. The major component is the title compound, (I), and is the result of an exo transition-state topography in the cycloaddition, whereas the minor component is presumed to come from an endo approach. A full report on the synthesis, as well as structural and mechanistic studies, will be published separately. Atoms O5, C12, N2, C13 and O6 are coplanar within less than $0.09 \AA$.

(I)

Experimental

To a suspension of activated magnesium turnings (3.25 mmol) in dry $\mathrm{Et}_{2} \mathrm{O}$ was added 1,2-dibromoethane (3.25 mmol). The resulting mixture was stirred until all magnesium turnings disappeared and the solvent was evaporated under an N_{2} stream. After addition of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(10 \mathrm{ml})$, (4S)-3-acryloyl-4-benzyl-1,3-oxazolidin-2-one $(1.10 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ was added at 263 K . After

Received 4 September 2002 Accepted 12 September 2002 Online 20 September 2002

Figure 1
The molecular structure of (I), shown with 50% probability displacement ellipsoids. H atoms are omitted for clarity.
stirring at 263 K for 15 min , dimethyl (2E)-[(dimethylamino)-methylene]-3-thiosuccinate $(1.10 \mathrm{mmol})$ was slowly added. The reaction mixture was then stirred at 263 K for 3 h . Saturated $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ was added and the organic layer was washed with saturated $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{ml})$, water $(5 \mathrm{ml})$ and brine $(5 \mathrm{ml})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was then dried over anhydrous MgSO_{4}, filtered and concentrated. The crude mixture was flash-chromatographed on silica (eluent: petroleum ether/AcOEt, 7:3) to afford (I) ($285 \mathrm{mg}, 57 \%$), along with one other diastereoisomer ($142 \mathrm{mg}, 28 \%$). Single crystals of (I) suitable for X-ray analysis were obtained by crystallization from $\mathrm{AcOEt} /$ petroleum ether.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$
$M_{r}=462.5$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.1205$ (1) \AA 。
$b=16.1195$ (4) \AA
$c=22.9272$ (6) \AA
$V=2261.98(9) \AA^{3}$
$Z=4$
$D_{x}=1.358 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: none
22365 measured reflections
4753 independent reflections 3833 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.088$
$S=1.23$
4753 reflections
290 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}(I)+0.001296 I^{2}\right]$
$(\Delta / \sigma)_{\text {max }}<0.001$
All non-H atoms were refined with anisotropic atomic displacement parameters. The orientation of the CH_{3} groups was determined from difference Fourier syntheses and they were initially refined as rigid bodies. All H atoms were then fixed at calculated and/or refined positions. A riding isotropic displacement parameter was used for all H atoms. The absolute configuration was unambiguously determined by refining the Flack enantiopole parameter using 1994 Friedel pairs.

Data collection: COLLECT (Nonius, 1998); cell refinement: $H K L$ SCALEPACK (Otwinowski \& Minor, 1997); data reduction: $H K L$ DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXTL (Sheldrick, 1995); program(s) used to refine structure: JANA2000 (Petricek \& Dusek, 2000); molecular graphics: DIAMOND (Brandenburg \& Berndt, 1999); software used to prepare material for publication: JANA2000.

References

Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-153.
Brandenburg, K \& Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Evans, D. A., Chapman, K. T., Bisaha, J. (1984). J. Am. Chem. Soc. 106, 42614263.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Marchand, A., Mauger, D., Guingant, A. \& Pradère, J.-P. (1995). Tetrahedron Asymmetry, 6, 4, 853-856.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Petricek, V. \& Dusek, M. (2000). JANA2000. Institute of Physics, Praha, Czech Republic.
Sheldrick, G. M. (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tea Gokou, C., Pradère, J.-P. \& Quiniou, H. (1985). J. Org. Chem. 50, 15451547.

Trippé, G., Perron, J., Harrison-Marchand, A., Dupont, V., Guingant, A., Pradère, J.-P. \& Toupet, L. (2002). Tetrahedron Lett. 43, 6067-6069.
Waldmann, H (1994). Synthesis, 535-551.

